Plasma Chemistry & Plasma Loading in an HPRF Cavity

B. Freemire
HPRF 6D Cooling Workshop
Nov. 7, 2013

Processes

- There are four main processes associated with the HPRF cavity:
 - Plasma formation

&

- Electron ion interactions
- Electron neutral interactions
- Ion ion interactions

Plasma Formation

 The number of electron – ion pairs produced by a beam can be calculated

$$N_{pairs} = \frac{dE/dx \ \rho \ L}{W_i} \ N_{beam}$$

dE/dx = stopping power $\rho = gas mass density$ L = beam path length $W_i = avg. molecular ionization energy$

Parameter	Units	MTA Beam (protons)	HCC Beam (muons)	
Momentum (KE)	MeV / c (MeV)	956 (400)	200 (121)	
Gas	-	H ₂ + Dry Air	$H_2 + O_2$	
Dopant concentration	%	5	1	
dE/dx	MeV cm ² / g	6.332	4.148	
ρ	g / cm³	0.00867	0.015	
W _i	MeV	36.2	36.2	
Bunch population	# / bunch	2 x 10 ⁸	1 x 10 ¹²	
N _{pairs} / L	# / cm / bunch	3.50×10^{11}	1.88 x 10 ¹⁵	

Plasma Formation – II

- Through collisions with gas molecules, electrons come into equilibrium (above room temperature) and drift with the RF field
 - Collision frequency: 64 x 10¹² s⁻¹ at 180 atm (30 ps equilibrium time)
 - Plasma frequency: $6.9 \times 10^{12} \text{ s}^{-1}$ (for $1.5 \times 10^{16} \text{ e}^{-1}/\text{cm}^3$)
- The ions remain in thermal equilibrium with the surrounding gas
- The amount of energy dissipated, or "plasma loading" can be evaluated:

$$dw = q \int v E_0 \sin(\omega t) dt = q \int \mu E_0^2 \sin^2(\omega t) dt$$
$$v = drift \ velocity \ \mu = mobility$$

Electron – Ion Interactions

- Electrons may recombine with the hydrogen ions formed (H^+ , H_2^+ , H_3^+ , H_5^+ , H_7^+ ...)
- We had no way of distinguishing the ion cluster, and so measured an effective rate
- Our measurements are on the order of $10^{-7} 10^{-6}$ cm³/s, consistent with Literature measurements of H₃⁺ and H₅⁺
- ***Recombination rates tend to increase with gas pressure***

11/7/13 Macdonald et al, Planet Space Sci., Vol. 32, No. 5, 1984

B. Freemire

Glosik et al, Plasma Sources Sci. Technol. 12 (2003)

Electron – Neutral Interactions

Electrons can become attached to O, in three-body reactions, that at high densities look like two-body reactions

$$e^{-} + O_{2} \rightarrow O_{2}^{-*}$$

$$O_{2}^{-*} + M \rightarrow O_{2}^{-} + M$$

$$O_{2}^{-*} + M \rightarrow e^{-} + O_{2} + M$$

The identity of the third body is important in the attachment process, and has been measured in great detail for N, and O, but not for H,

Fig. 4. $\tau_1/2P_{\rm O_2}$ versus $1/P_{\rm H_2}$, $1/P_{\rm D_2}$ ($P_{\rm O_2}/P_{\rm H_2}$ = 0.0188, $P_{\rm O_2}/P_{\rm D_2}$ = 0.00217). Shimamori and Hatano, Chem. Phys. Lett., Vol. 38, No. 2, 1976

B. Freemire

Electron - Neutral Interactions II

- Our third bodies are mostly H₂, with some N₂ and O₂
- The rate equation for electrons is:

$$\frac{dn_e}{dt} = \dot{N} - \beta \, n_e n_{H^+} - \frac{n_e}{\tau} \qquad \beta n_e n_{H^+} = \sum_{l} \beta_l n_e n_{H^+_l} \qquad \frac{n_e}{\tau} = \sum_{M} k_M n_e n_{O_2} n_M$$

 Using our measurements of the recombination rate in pure hydrogen and energy loss per electron-ion pair, the measured power loss can be fit to give the attachment time of electrons

- On the right are the extrapolated attachment times for H₂ doped with 1% dry air at an E/P = 20 MV/m / 180 atm
- The prediction at 180 atm is 142 ps

Ion – Ion Interactions

- Because the electrons go away so fast, ions play a significant role in plasma loading
- No work has been done on hydrogen-oxygen ion recombination, however other ions have been studied
 - Rates fall with E/P
 - Above 1 atm, rates fall with with P
- Our data shows similar trends the ion-ion recombination rate predicted is on the order of 10⁻⁹ cm³/s at 180 atm and 20 MV/m
- This is not fast enough to negate the ions within a beam pulse
- Luckily ions load the cavity ~100 times less than electrons

FIG. 4. Kr^++F^{-1} Ar recombination-rate coefficient. Solid line is curve (2) from Fig. 1. Points \square are MD calculations for $n_i = 10^{13}$ cm⁻³ using MD option (iii) (see Sec. IV of text). Points \square are MD calculations for $n_i = 10^{15}$ cm⁻³ using MD option (iv).

FIG. 6. Kr^++F^- He recombination-rate coefficient vs discharge E/N for P=3 atm and $n_i=10^{15}$ cm⁻³.

Pressure Effects

 It is known that gas and plasma density affects the mobility (drift velocity), recombination rate, and attachment rates

Gases Studied

 Energy loss and electron-ion recombination rates have been measured for the following gases:

 Electron attachment time and ion-ion recombination rates have been measured for the following gas combinations:

- Due to its high boiling point, SF₆ would have to be used at room temperature
- The only suitable electronegative dopant appears to be O_2 a small amount (~1%) does not significantly change the radiation length of the gas
- H_2 or D_2 appear to be the only candidates with suitable stopping power in the 200 MeV/c μ momentum range

Hydrogen vs Deuterium

- D₂ ions load the cavity less than H₂ ions due to their larger mass
- Initial results also indicate the ion-ion recombination rates for $\rm D_{_2}$ are larger than those for $\rm H_{_2}$
- Data was taken with only one gas pressure and one dopant concentration
 - More data is needed to reach any conclusions

Plasma Loading Calculation

- Input parameters (derived from beam test data):
 - Electron attachment time
 - Electron hydrogen recombination rate
 - Hydrogen oxygen recombination rate
 - Electron drift velocity (constant)
 - Ion energy loss
- Assumptions:
 - 325 MHz bunched beam
 - 21 delta function bunches
 - 160° injection (relative to RF)
 - 20 MV/m peak E field
 - $_{-}$ 180 atm H $_{_{2}}$ gas with 1% DA
 - 10 cm long cavity

- Recombination rates constant (10⁻⁶ cm³/s e-H, 10⁻⁹ cm³/s O-H)
- 1 cm³ plasma volume (homogeneous density)
- Attachment time varies with E field (100 ps min.)
- Cavity voltage not affected by plasma loading

Plasma Loading Calculation Results

- The total number of each charged particle species is tracked over 21 beam pulses
- Electrons "decay" very quickly, however ions build up over time
- Time step is 1/1000 of an RF period
- 650 MHz RF, 10¹² μ/bunch is shown

Plasma Loading Calculation Results – II

- Two RF frequencies and two bunch intensities were considered
- In all cases, plasma loading was minimal

Parameter	Unit	Value			
RF frequency	MHz	325		650	
Stored energy	J	19		4.7	
μ/bunch	#	1011	10 ¹²	1011	10 ¹²
Electron dissipated energy	J	0.014	0.072	0.012	0.062
Ion dissipated energy	J	0.010	0.029	0.020	0.059
Total dissipated energy	J	0.024	0.101	0.032	0.121
% of V _{accel} seen by last bunch	%	99.9	99.7	99.7	98.7

Conclusions

- Based on extrapolation of parameters measured during the MTA HPRF beam test, plasma loading appears to be minimal in a HCC
- The effects of higher gas and plasma densities must be investigated
 - All signs point to positive effects
 - Experimental data will be difficult to obtain
 - Simulation must be relied upon in the meantime